
P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 1 | P a g e

Backpressure-Based Packet-By-Packet Adaptive Routing For

Traffic Management in Communication Networks

P. Swetha, Mrs. O. Rajitha
 M. Tech (S.E), Sir Visweshwaraih Institute of Science & Tech, Madanapalli.

Assistant professor, Sir Visweshwaraih Institute of Science & Tech, Madanapalli

Abstract
Back pressure-based adaptive routing algorithms where each packet is routed along a possibly different

pathhave been extensively studied in the literature. However, suchalgorithms typically result in poor delay

performance and involvehigh implementation complexity. In this paper, we develop anew adaptive routing

algorithm built upon the widely-studiedback-pressure algorithm. We decouple the routing and

schedulingcomponents of the algorithm by designing a probabilistic routingtable which is used to route packets

to per-destination queues.The scheduling decisions in the case of wireless networks aremade using counters

called shadow queues. The results arealso extended to the case of networks which employ simpleforms of

network coding. In that case, our algorithm provides alow-complexity solution to optimally exploit the routing-

codingtrade-off.

I. INTRODUCTION
The back-pressure algorithm introduced in [25]

has beenwidely studied in the literature. While the

ideas behindscheduling using the weights suggested

in that paper have beensuccessful in practice in base

stations and routers, the adaptiverouting algorithm is

rarely used. The main reason for this isthat the

routing algorithm can lead to poor delay

performancedue to routing loops. Additionally, the

implementation of theback-pressure algorithm

requires each node to maintain predestination queues

which can be burdensome for a wirelineor wireless

router. Motivated by these considerations, we re-

examine the back-pressure routing algorithm in the

paper anddesign a new algorithm which has much

superior performanceand low implementation

complexity.

Prior work in this area [22] has recognized the

importanceof doing shortest-path routing to improve

delay performanceand modified the back-pressure

algorithm to bias it towardstaking shortest-hop

routes. A part of our algorithm has similarmotivating

ideas, but we do much more. In addition to

provablythroughput-optimal routing which minimizes

the numberof hops taken by packets in the network,

we decouple routingand scheduling in the network

through the use of probabilisticrouting tables and the

so-called shadow queues. The min-hoprouting idea

was studied first in a conference paper [7] andshadow

queues were introduced in [6], but the key step

ofdecoupling the routing and scheduling which leads

to bothdramatic delay reduction and the use of per-

next-hop queueingis original here. The min-hop

routing idea is also studied in[26] but their solution

requires even more queues than theoriginal back-

pressure algorithm.

We also consider networks where simple

forms of networkcoding is allowed [17]. In such

networks, a relay between twoother nodes XORs

packets and broadcast them to decrease thenumber of

transmissions. There is a trade-off between

choosinglong routes to possibly increase network

coding opportunities(see the notion of reverse

carpooling in [10]) and choosingshort routes to

reduce resource usage. Our adaptive routingalgorithm

can be modified to automatically realize this trade-

offwith good delay performance. In addition, network

codingrequires each node to maintain more queues

[15] and ourrouting solution at least reduces the

number of queues to bemaintained for routing

purposes, thus partially mitigating theproblem. An

offline algorithm for optimally computing therouting-

coding trade-off was proposed in [23]. Our

optimizationformulation bears similarities to this

work but our mainfocus is on designing low-delay

on-line algorithms. Backpressuresolutions to network

coding problems have also beenstudied in [14], [11],

[8], but the adaptive routing-codingtrade-off solution

that we propose here has not been studiedpreviously.

We summarize our main results below.

_ Using the concept of shadow queues, we decouple

routingand scheduling. A shadow network is used to

update aprobabilistic routing table which packets use

upon arrivalat a node. The back-pressure-based

scheduling algorithmis used to serve FIFO queues

over each link.

_ The routing algorithm is designed to minimize the

averagenumber of hops used by packets in the

network.This idea, along with the scheduling/routing

RESEARCH ARTICLE OPEN ACCESS

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 2 | P a g e

decoupling,leads to delay reduction compared with

the traditionalback-pressure algorithm.

_ Each node has to maintain counters, called

shadowqueues, per destination. This is very similar to

the idea ofmaintaining a routing table per destination.

But the realqueues at each node are per-next-hop

queues in the caseof networks which do not employ

network coding. Whennetwork coding is employed,

per-previous-hop queuesmay also be necessary but

this is a requirement imposedby network coding, not

by our algorithm.

_ The algorithm can be applied to wireline and

wirelessnetworks. Extensive simulations show

dramatic improvementin delay performance

compared to the back-pressurealgorithm.

The rest of the paper is organized as follows. We

presentthe network model in Section II. In Section III

and IV, the traditionalback-pressure algorithm and its

modified version areintroduced. We develop our

adaptive routing and scheduling algorithm for

wireline and wireless networks with and without

network coding in Section V, VI and VII. In Section

VIII, thesimulation results are presented. We

conclude our paper inSection IX.

II. THE NETWORK MODEL
We consider a multi-hop wire line or wireless

networkrepresented by a directed graph G = (N;L);

where N is theset of nodes and L is the set of directed

links. A directed linkthat can transmit packets from

node n to node j is denotedby (nj) 2 L: We assume

that time is slotted and define thelink capacity cnj to

be the maximum number of packets thatlink (nj) can

transmit in one time slot.

Let F be the set of flows that share the network.

Eachflow is associated with a source node and a

destination node,but no route is specified between

these nodes. This meansthat the route can be quite

different for packets of the sameflow. Let b(f) and

e(f) be source and destination nodes,respectively, of

flow f: Let xf be the rate (packets/slot) atwhich

packets are generated by flow f: If the demand onthe

network, i.e., the set of flow rates, can be satisfied

bythe available capacity, there must exist a routing

algorithmand a scheduling algorithm such that the

link rates lie inthe capacity region. To precisely state

this condition, wedefine _dnj to be the rate allocated

on link (nj) to packets destined for node d: Thus, the

total rate allocated to all flowsat link (nj) is given by

 Clearly, for thenetwork to be

able to meet the traffic demand, we should have:

whereA_ is the capacity region of the network

for 1-hop traffic.The capacity region of the network

for 1-hop traffic containsall sets of rates that are

stabilizable by some kind of schedulingpolicy

assuming all traffics are 1-hop traffic. As a special

case,in the wire line network, the constraints are:

As opposed to _; let _ denote the capacity region

of the multihopnetwork, i.e., for any set of flows fxf

gf2F 2 _; thereexists some routing and scheduling

algorithms that stabilizethe network.

In addition, a flow conservation constraint must

be satisfiedat each node, i.e., the total rate at which

traffic can possiblyarrive at each node destined to d

must be less than or equal tothe total rate at which

traffic can depart from the node destinedto d :

 (1)

where I denotes the indicator function. Given a

set of arrivalrates x = fxf gf2F that can be

accommodated by the network,one version of the

multi-commodity flow problem is to findthe traffic

splits _dnj such that (1) is satisfied. However,

findingthe appropriate traffic split is computationally

prohibitive andrequires knowledge of the arrival

rates. The back-pressurealgorithm to be described

next is an adaptive solution to themulti-commodity

flow problem.

III. THROUGHPUT-OPTIMAL BACK-

PRESSUREALGORITHM AND ITS

LIMITATIONS
The back-pressure algorithm was first described

in [25]in the context of wireless networks and

independently discoveredlater in [2] as a low-

complexity solution to certainmulti-commodity flow

problems. This algorithm combinesthe scheduling

and routing functions together. While manyvariations

of this basic algorithm have been studied,

theyprimarily focus on maximizing throughput and

do not considerQoS performance. Our algorithm uses

some of these ideasas building blocks and therefore,

we first describe the basicalgorithm, its drawbacks

and some prior solutions.

The algorithm maintains a queue for each

destination at eachnode. Since the number of

destinations can be as large as thenumber of nodes,

this per-destination queueing requirement can be

quite large for practical implementation in a

network.At each link, the algorithm assigns a weight

to each possibledestination which is called back-

pressure. Define the back pressureat link (nj) for

destination d at slot t to be

where Qnd[t] denotes the number of packets at node

n destinedfor node d at the beginning of time slot t:

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 3 | P a g e

Under this notation,Qnn[t] = 0; 8t: Assign a weight

wnj to each link (nj); wherewnj is defined to be the

maximum back-pressure over allpossible

destinations, i.e.,

Let d_nj be the destination which has the

maximum weight onlink (nj);

 (2)

If there are ties in the weights, they can be

broken arbitrarily.Packets belonging to destination

d_nj[t] are scheduled fortransmission over the

activated link (nj): A schedule is a set oflinks that can

be activated simultaneously without interferingwith

each other. Let � denote the set of all schedules.

Theback-pressure algorithm finds an optimal

schedule __[t] whichis derived from the optimization

problem:

 (3)

Specially, if the capacity of every link has the

same value,the chosen schedule maximizes the sum

of weights in anyschedule.At time t; for each

activated link (nj) 2 __[t] we removecnj packets from

Qnd_nj[t] if possible, and transmit thosepackets to

Qjd_nj[t]: We assume that the departures occur firstin

a time slot, and external arrivals and packets

transmittedover a link (nj) in a particular time slot are

available to node j at the next time slot. Thus the

evolution of the queue Qnd[t]is as follows:

 (4)

where ^_nj[t] is the number of packets

transmitted over link(nj) in time slot t and af [t] is the

number of packets generatedby flow f at time t: It has

been shown in [25] that the backpressurealgorithm

maximizes the throughput of the network.

A key feature of the back-pressure algorithm is

that packetsmay not be transferred over a link unless

the back-pressureover a link is non-negative and the

link is included in thepicked schedule. This feature

prevents further congestingnodes that are already

congested, thus providing the adaptivelyof the

algorithm. Notice that because all links can be

activatedwithout interfering with each other in the

wire line network, �is the set of all links. Thus the

back-pressure algorithm can belocalized at each node

and operated in a distributed mannerin the wire line

network.The back-pressure algorithm has several

disadvantages thatprohibit practical implementation:

_ The back-pressure algorithm requires maintaining

queuesfor each potential destination at each node.

This queuemanagement requirement could be a

prohibitive overheadfor a large network.

_ The back-pressure algorithm is an adaptive routing

algorithmwhich explores the network resources and

adaptsto different levels of traffic intensity. However

it mightalso lead to high delays because it may

choose long pathsunnecessarily. High delays are also

a result of maintaininga large number of queues at

each node. Only one queuecan be scheduled at a

time, and the unused service couldfurther contribute

to high latency.

In this paper, we address the high delay and

queueingcomplexity issues. The computational

complexity issue forwireless networks is not

addressed here. We simply use therecently studied

greedy maximal scheduling (GMS) algorithm.Here

we call it the largest-weight-first algorithm, in

short,LWF algorithm. LWF algorithm requires the

same queue structurethat the back-pressure algorithm

uses. It also calculates theback-pressure at each link

using the same way. The differencebetween these

two algorithms only lies in the methods to pick

aschedule. Let S denote the set of all links initially.

Let Nb(l) bethe set of links within the interference

range of link l includingl itself. At each time slot, the

LWF algorithm picks a link lwith the maximum

weight first, and removes links within theinterference

range of link l from S; i.e., S = SnNb(l); then itpicks

the link with the maximum weight in the updated set

S;and so forth. It should be noticed that LWF

algorithm reducesthe computational complexity with

a price of the reductionof the network capacity

region. The LWF algorithm wherethe weights are

queue lengths (not back-pressures) has

beenextensively studied in [9], [16], [4], [18], [19].

While these studies indicate that there may be

reduction in throughputdue to LWF in certain special

network topologies, it seemsto perform well in

simulations and so we adopt it here.

In the rest of the paper, we present our main

results whicheliminate many of the problems

associated with the backpressurealgorithm.

IV. MIN-RESOURCE ROUTING

USING BACK-

PRESSUREALGORITHM
As mentioned in Section III, the back-pressure

algorithmexplores all paths in the network and as a

result may choosepaths which are unnecessarily long

which may even containloops, thus leading to poor

performance. We address thisproblem by introducing

a cost function which measures thetotal amount of

resources used by all flows in the network.Specially,

we add up traffic loads on all links in the networkand

use this as our cost function. The goal then is to

minimizethis cost subject to network capacity

constraints.Given a set of packet arrival rates that lie

within the capacityregion, our goal is to find the

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 4 | P a g e

routes for flows so that we use asfew resources as

possible in the network. Thus, we formulatethe

following optimization problem:

We now show how a modification of the back-

pressurealgorithm can be used to solve this min-

esource routingproblem. (Note that similar

approaches have been used in[20], [21], [24], [12],

[13] to solve related resource allocationproblems.)

Let fqndg be the Lagrange multipliers

corresponding to theflow conservation constraints in

problem (5). Appending theseconstraints to the

objective, we get

If the Lagrange multipliers are known, then the

optimal _ canbe found by solving

wherewnj = maxd(qnd�qjd�1): The form of the

constraintsin (5) suggests the following update

algorithm to compute

where 1M is a step-size parameter. Notice that

Mqnd[t] looksvery much like a queue update

equation, except for the factthat arrivals into Qnd

from other links may be smaller than_dln when Qld

does not have enough packets. This suggeststhe

following algorithm.

Min-resource routing by back-pressure: At time

slot t;

_ Each node n maintains a separate queue of packets

foreach destination d; its length is denoted Qnd[t].

Each linkis assigned a weight

 (8)

where M > 0 is a parameter.

_ Scheduling/routing rule:

 (9)

_ For each activated link (nj) 2 __[t] we remove

cnjpackets from Qnd_nj[t] if possible, and transmit

thosepackets to Qjd_nj[t]; where d_nj[t] achieves the

maximumin (8).

Note that the above algorithm does not change if

we replacethe weights in (8) by the following, re-

scaled ones:

 (10)

and therefore, compared with the traditional back-

pressurescheduling/routing, the only difference is that

each link weightis equal to the maximum differential

backlog minus parameterM. (M = 0 reverts the

algorithm to the traditional one.) Forsimplicity, we

call this algorithm M-back-pressure algorithm.The

performance of the stationary process which is

“produced”by the algorithm with fixed parameter M

is withino(1) of the optimal as M goes to 1

(analogous to the proofsin [21], [24]; see also the

related proof in [12], [13]):

where __ is an optimal solution to (5).

Although M-back-pressure algorithm could

reduce the delay by forcing flows to go through

shorter routes, simulations indicate a significant

problem with the basic algorithm presented above. A

link can be scheduled only if the backpressure of at

least one destination is greater than or equal to M:

Thus, at light to moderate traffic loads, the delays

could be high since the back-pressure may not build

up sufficiently fast. In order to overcome all these

adverse issues, we develop a new routing algorithm

in the following section. The solution also simplifies

the queuing data structure to be maintained at each

node.

V. PARN: PACKET-BY-PACKET

ADAPTIVE ROUTING AND

SCHEDULING ALGORITHM FOR

NETWORKS
In this section, we present our adaptive routing

and scheduling algorithm. We will call it PARN

(Packet-by-Packet Adaptive Routing for Networks)

for ease for repeated reference later. First, we

introduce the queue structure that is used in PARN.

In the traditional back-pressure algorithm, each

node n has to maintain a queue qnd for each

destination d: Let jN j and jDj denote the number of

nodes and the number of destinations in the network,

respectively. Each node maintains jDj queues.

Generally, each pair of nodes can communicate along

a path connecting them. Thus, the number of queues

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 5 | P a g e

maintained at each node can be as high as one less

than the number of nodes in the network, i.e., jDj=jN

j � 1:

Instead of keeping a queue for every destination,

each node n maintains a queue qnj for every

neighbour j; which is called a real queue. Notice that

real queues are per-neighbour queues. Let Jn denote

the number of neighbours of node n; and let Jmax =

maxnJn: The number of queues at each node is no

greater than Jmax: Generally, Jmax is much smaller

than jN j: Thus, the number of queues at each node is

much smaller compared with the case using the

traditional back-pressure algorithm.

In additional to real queues, each node n also

maintains a counter, which is called shadow queue,

pnd for each destination d: Unlike the real queues,

counters are much easier to maintain even if the

number of counters at each node grows linearly with

the size of the network. A back-pressure algorithm

run on the shadow queues is used to decide which

links to activate. The statistics of the link activation

are further used to route packets to the per-next-hop

neighbour queues mentioned earlier. The details are

explained next.

A. Shadow Queue Algorithm – M-back-pressure

Algorithm.

The shadow queues are updated based on the

movement of fictitious entities called shadow packets

in the network. The movement of the fictitious

packets can be thought of as an exchange of control

messages for the purposes of routing and schedule.

Just like real packets, shadow packets arrive from

outside the network and eventually exit the network.

The external shadow packet arrivals are general as

follows: when an exogenous packet arrives at node n

to the destination d; the shadow queue pnd is

incremented by 1; and is further incremented by 1

with probability " in addition. Thus, if the arrival rate

of a flow f is xf ; then the flow generates “shadow

traffic” at a rate xf (1 + "): In words, the incoming

shadow traffic in the network is (1 + ") times of the

incoming real traffic.

The back-pressure for destination d on link (nj)

is taken to Be

where M is a properly chosen parameter. The

choice of M will be discussed in the simulations

section.

The evolution of the shadow queue pnd[t] is

 (11)

where ^_nj[t] is the number of shadow packets

transmitted over link (nj) in time slot t, d_ nj[t] is the

destination that has the maximum weight on link (nj);

and ^af [t] is the number of shadow packets

generated by flow f at time t: The number of shadow

packets scheduled over the links at each time instant

is determined by the back-pressure algorithm in

equation (9).

From the above description, it should be clear

that the shadow algorithm is the same as the

traditional back-pressure algorithm, except that it

operates on the shadow queueing system with an

arrival rate slightly larger than the real external

arrival rate of packets. Note the shadow queues do

not involve any queueing data structure at each node;

there are no packets to maintain in a FIFO order in

each queue. The shadow queue is simply a counter

which is incremented by 1 upon a shadow packet

arrival and decremented by 1 upon a departure.

The back-pressure algorithm run on the shadow

queues is used to activate the links. In other words, if

__ nj = 1 in (9), then link (nj) is activated and packets

are served from the real queue at the link in a first-in,

first-out fashion. This is, of course, very different

from the traditional back-pressure algorithm where a

link is activated to serve packets to a particular

destination. Thus, we have to develop a routing

scheme that assigns packets arriving to a node to a

particular next-hop neighbor so that the system

remains stable. We design such an algorithm next.

B. Adaptive Routing Algorithms

Now we discuss how a packet is routed once it

arrives at a node. Let us define a variable _d nj[t] to

be the number of shadow packets “transferred” from

node n to node j for destination d during time slot t

by the shadow queue algorithm. Let us denote by __d

nj the expected value of _d nj[t], when the shadow

queueingprocess is in a stationary regime; let ^_d

nj[t] denote an estimate of __d nj, calculated at time

t. (In the simulations we use the exponential

averaging, as specified in the next section.)

At each time slot, the following sequence of

operations occurs at each node n: A packet arriving at

node n for destination d is inserted in the real queue

qnj for next-hop neighbor j with probability

 (12)

Thus, the estimates ^_d nj[t] are used to perform

routing operations: in today’s routers, based on the

destination of a packet, a packet is routed to its next

hop based on routing table entries. Instead, here, the

__’s are used to probabilistically choose the next hop

for a packet. Packets waiting at link (nj) are

transmitted over the link when that link is scheduled

(See Figure 1).

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 6 | P a g e

Fig. 1. Probabilistic splitting algorithm in Node n

The first question that one must ask about the

above algorithm is whether it is stable if the packet

arrival rates from flows are within the capacity region

of the multi-hop network. This is a difficult question,

in general. Since the shadow queues are positive

recurrent, “good” estimates ^_d nj[t] can be

maintained by simple averaging (e.g. as specified in

the next section), and therefore the probabilities in

(12) will stay close to their “ideal” values

The following theorem asserts that the real

queues are stable if Pdnj are fixed at _ Pdnj:

Theorem 1: Suppose, Pdnj[t] _ _ Pdnj. Assume

that there exists a delta such that fxf (1 + _ + _)g lies

in T. Let af [t] be the number of packets arriving

from flow f at time slot t; with E(af [t]) = xf and E(af

[t]) < 1: Assume that the arrival process is

independent across time slots and flows (this

assumption can be considerably relaxed). Then, the

Markov chain, jointly describing the evolution of

shadow queues and real FIFO queues (whose state

include the destination of the real packet in each

position of each FIFO queue), is positive recurrent.

Proof: The key ideas behind the proof are outlined.

The details are similar to the proof in [5] and are

omitted.

_ The average rate at which packets arrive to link (nj)

is strictly smaller than the capacity allocated to the

link by the shadow process if " > 0. (This fact is

verified in Appendix A.)

_ It follows that the fluid limit of the real-queue

process is same as that of the networks in [3]. Such

fluid limit is stable [3], which implies the stability of

our process as well.

VI. IMPLEMENTATION DETAILS
The algorithm presented in the previous section

ensures that the queue lengths are stable. In this

section, we discuss a number of enhancements to the

basic algorithm to improve performance.

A. Exponential Averaging

To compute ^_d nj[t] we use the following

iterative exponential averaging algorithm:

 (13)

where 0 < _ < 1:

B. Token Bucket Algorithm

Computing the average shadow rate ^_d nj[t] and

generating random numbers for routing packets may

impose a computational overhead of routers which

should be avoided if possible. Thus, as an alternative,

we suggest the following simple algorithm. At each

node n; for each next-hop neighbor j and each

destination d; maintain a token bucket rdnj: Consider

the shadow traffic as a guidance of the real traffic,

with tokens removed as shadow packets traverse the

link. In detail, the token bucket is decremented by _d

nj[t] in each time slot, but cannot go below the lower

bound 0:

When rd we say that

tokens (associated with

bucket rdnj) are “wasted” in slot t. Upon a packet

arrival at node n for destination d; find the token

bucket rdnj_ which has the smallest number of tokens

(the minimization is over next-hop neighbors j),

breaking ties arbitrarily, add the packet to the

corresponding real queue qnj_ and add one token to

the corresponding bucket:

 (14)

To explain how this algorithm works, denote by

__d nj the average value of _d nj[t] (in stationary

regime), and by _dn the average rate at which real

packets for destination d arrive at node n. Due to the

fact that real traffic is injected by each source at the

rate strictly less than the shadow traffic, we have

 (15)

For a single-node network, (15) just means that

arrival rate is less than available capacity. More

generally, it is an assumption that needs to be proved.

However, here our goal is to provide an intuition

behind the token bucket algorithm, so we simply

assume (15). Condition (15) guarantees that the token

processes are stable (that is, roughly, they cannot

runaway to infinity) since the total arrival rate to the

token buckets at a node is less than the total service

rate and the arrivals employ a join-the-shortest-queue

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 7 | P a g e

discipline. Moreover, since rdnj[t] are random

processes, the token buckets will “hit 0” in a non-

zero fraction of time slots, except in some degenerate

cases; this in turn means that the arrival rate of

packets at the token bucket must be less than the

token generation rate:

 (16)

where _d nj is the actual rate at which packets

arriving at n and destined for d are routed along link

(nj). Inequality (16) thus describes the idea of the

algorithm.

Ideally, in addition to (16), we would like to

have the ratios _d nj=__d nj to be equal across all j,

i.e., the real packet arrival rates at the outgoing links

of a node should be proportional to the shadow

service rates. It is not difficult to see that if " is very

small, the proportion will be close to ideal. In

general, the token-based algorithm does not

guarantee that, that is why it is an approximation.

Also, to ensure implementation correctness,

instead of (14), we use

 (17)

i.e., the value of rdnj_ [t] is not allowed to go

above some relatively large value B, which is a

parameter of the order of O(1=_). Under “normal

circumstances”, rdnj_ [t] “hitting” ceiling B is a rare

event, occurring due to the process randomness. The

main purpose of having the upper bound B is to

detect serious anomalies when, for whatever reason,

the condition (15) “breaks” for prolonged periods of

time – such situation is detected when any rdnj_ [t]

hits the upper bound B frequently.

C. Extra Link Activation

Under the shadow back-pressure algorithm, only

links with back-pressure greater than or equal to M

can be activated. The stability theory ensures that this

is sufficient to render the real queues. On the other

hand, the delay performance can still be

unacceptable. Recall that the parameter M was

introduced to discourage the use of unnecessarily

long paths. However, under light and moderate traffic

loads, the shadow back-pressure at a link may be

frequently less than M, and thus, packets at such links

may have to wait a long time before they are

processed. One way to remedy the situation is to

activate additional links beyond those activated by

the shadow back-pressure algorithm.

The basic idea is as follows: in each time slot,

first run the shadow back-pressure algorithm. Then,

add additional links to make the schedule maximal. If

the extra activation procedure depends only on the

state of shadow queues (but beyond that, can be

random and/or arbitrarily complex), then the stability

result of Theorem 1 still holds (with essentially same

proof). Informally, the stability prevails, because the

shadow algorithm alone provides sufficient average

throughput on each link, and adding extra capacity

“does not hurt”; thus, with such extra activation, a

certain degree of “decoupling” between routing

(totally controlled by shadow queues) and scheduling

(also controlled by shadow queues, but not

completely) is achieved.

For example, in the case of wireline networks, by

the above arguments, all links can be activated all the

time. The shadow routing algorithm ensures that the

arrival rate at each link is less than its capacity. In

this case the complete decoupling of routing and

scheduling occurs.

In practice, activating extra links which have

large queue backlogs leads to better performance than

activating an arbitrary set of extra links. However, in

this case, the extra activation procedure depends on

the state of real queues which makes the issue of

validity of an analog of Theorem 1 much more

subtle. We believe that the argument in this

subsection provides a good motivation for our

algorithm, which is confirmed by simulations.

D. The Choice of the Parameter "

From basic queueing theory, we expect the delay

at each link to be inversely proportional to the mean

capacity minus the arrival rate at the link. In a

wireless network, the capacity at a link is determined

by the shadow scheduling algorithm. This capacity is

guaranteed to be at least equal to the shadow arrival

rate. The arrival rate of real packets is of course

smaller. Thus, the difference between the link

capacity and arrival rate could be proportional to

epsilon. Thus, epsilon should be sufficiently large to

ensure small delays while it should be sufficiently

small to ensure that the capacity region is not

diminished significantly. In our simulations, we

found that choosing " = 0:1 provides a good tradeoff

between delay and network throughput.

In the case of wireline networks, recall from the

previous subsection that all links are activated.

Therefore, the parameter epsilon plays no role here.

VII. EXTENSION TO THE NETWORK

CODING CASE
In this section, we extend our approach to

consider networks where network coding is used to

improve throughput. We consider a simple form of

network coding illustrated in Figure 2. When i and j

each have a packet to send to the other through an

intermediate relay n, traditional transmission requires

the following set of transmissions: send a packet a

from ito n, then n to j, followed by j to n and n to i.

Instead, using network coding, one can first send

from ito n, then j to n, XOR the two packets and

broadcast the XORed packet from n to both i and j.

This form of network coding reduces the number of

transmissions from four to three. However, the

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 8 | P a g e

network coding can only improve throughput only if

such coding opportunities are available in the

network. Routing plays an important role in

determining whether such opportunities exist. In this

section, we design an algorithm to automatically find

the right tradeoff between using possibly long routes

to provide network coding opportunities and the

delay incurred by using long routes.

Fig. 2. Network coding opportunity

A. System Model

We still consider the wireless network

represented by the graph G = (N;L): Let xf be the rate

(packets/slot) at which packets are generated by flow

f: To facilitate network coding, each node must not

only keep track of the destination of the packet, but

also remember the node from which a packet was

received. Let _dl nj be the rate at which packets

received from either node l or flow l, destined for

node d, are scheduled over link (nj). Note that, for

compactness of notation, we allow l in the definition

of _dl nj to denote either a flow or a node. We

assume _dl nj is zero when such a transmission is not

feasible, i.e., when n is not the source node or d is not

the destination node of flow l, or if (ln) or (nj) is not

in L. At node n; the network coding scheme may

generate a coded packet by “XORing” two packets

received from previous-hop nodes l and j destined for

the destination nodes d and d0 respectively, and

broadcast the coded packet to nodes j and l: Let

_d;d0njjl denote the rate at which coded packets can

be transferred from node n to nodes j and l destined

for nodes d and d0; respectively. Notice that, due to

symmetry, the following equality holds _d;d0 njjl =

_d0;d njlj : Assume _d;d0 njjl to be zero if at least

one of (nl); (ln); (nj) and (jn) doesn’t belong to L:

Note that _dl nj = 0 when d = l or d = n; and _d;d0

njjl = 0 when d = n or d0 = n:

There are two kinds of transmissions in our

network model: point-to-point transmissions and

broadcast transmissions. The total point-to-point rate

at which packets received externally or from a

previous-hop node are scheduled on link (nj) and

destined to d is denoted by

and the total broadcast rate at which packets

scheduled on link (nj) destined to d is denoted by

The total point-to-point rate on link (nj) is

denoted by

and the total broadcast rate at which packets are

broadcast from node n to nodes j and l is denoted by

Let _ be the set of rates including all point-to-

point transmissions and broadcast transmissions, i.e.,

The multi-hop traffic should also satisfy the flow

conservation constraints. Flow conservation

constraints: For each node n; each neighbour j; and

each destination d; we have

 (18)

where the left-hand side denotes the total

incoming traffic rate at link nj destined to d; and the

right-hand side denotes the total outgoing traffic rate

from link nj destined to d: For each node n and each

destination d; we have

 (19)

where I denotes the indicator function.

B. Links and Schedules

We allow broadcast transmission in our network

model. In order to define a schedule, we first define

two kinds of “links:” the point-to-point link and the

broadcast link. A point-to-point link (nj) is a link that

supports point-to-point transmission, where (nj) 2 L;

A broadcast link (njlj) is a “link” which contains

links (nl) and (nj) and supports broadcast

transmission. Let B denote the set of all broadcast

links, thus (njlj) 2 B: Let _ L be the union of the set

of the point-to-point links L and the set of the

broadcast links B; i.e., _ L = L [B: We let �0 denote

the set of links that can be activated simultaneously.

By abusing notation, �0 can be thought of as a set of

vectors where each vector is a list of 1’s or 0’s where

a 1 corresponds to an active link and a 0 corresponds

to an inactive link. Then, the capacity region of the

network for 1- hop traffic is the convex hull of all

schedules, i.e., _0 = co(�0): Thus,

C. Queue Structure and Shadow Queue Algorithm

Each node n maintains a set of counters, which

are called shadow queues, plnd for each previous hop

l and each destination d; and p0nd for external flows

destined for d at node n: Each node n also maintains a

real queue, denoted by qlnj; for each previous hop l

and each next-hop neighbor j; and q0nj for external

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 9 | P a g e

flows with their next hop j: By solving the

optimization problem with flow conservation

constraints, we can work out the back-pressure

algorithm for network coding case (see the brief

description in Appendix B). More specifically, for

each link (nj) 2 L in the network and for each

destination d; define the back-pressure at every slot

to be

 (20)

For each broadcast at node n to nodes j and l

destined for d and d0; respectively, define the back-

pressure at every slot to be

 (21)

The weights associated with each point-to-point

link (nj) 2 L and each broadcast link (njjl) are defined

as follows

 (22)

The rate vector ~__[t] at each time slot is chosen

to satisfy

By running the shadow queue algorithm in

network coding case, we get a set of activated links in

_ L at each slot. Next we describe the evolution of

the shadow queue lengths in the network. Notice that

the shadow queues at each node n are distinguished

by their previous hop l and their destination d; so

plnd only accepts the packets from previous hop l

with destination d: The similar rule should be

followed when packets are drained from the shadow

queue plnd: We assume the departures occur before

arrivals at each slot, and the evolution of queues is

given by

 where ^_d kln[t] is the actual number of

shadow packets scheduled over link (ln) and destined

for d from the shadow queue pkld at slot t;

^_d;d0ljnk[t] is the actual number of coded shadow

packets transfered from node l to nodes n and k

destined for nodes d and d0 at slot t; and ^af denotes

the actual number of shadow packets from external

flow f received at node n destined for d:

D. Implementation Details

The implementation details of the joint adaptive

routing and coding algorithm are similar to the case

with adaptive routing only, but the notation is more

cumbersome. We briefly describe it here.

1) Probabilistic Splitting Algorithm: The probabilistic

splitting algorithm chooses the next hop of the packet

based on the probabilistic routing table. Let Pdlnj[t]

be the probability of choosing node j as the next hop

once a packet destined for d receives at node n from

previous hop l or from external flows, i.e., l = 0 at

slot t: Assume that Pdlnj[t] = 0 if (nj) 62 L:

Obviously, P j2N Pdlnj[t] = 1: Let _d lnj[t] denote the

number of potential shadow packets “transferred”

from node n to node j destined for d whose previous

hop is l during time slot t: Notice that the packet

comes from an external flow if l = 0: Also notice that

_d lnj[t] is contributed by shadow traffic point-to-

point transmission as well as shadow traffic broadcast

transmission, i.e.,

We keep track of the the average value of _d lnj[t]

across time by using the following updating process:

 (24)

where 0 _ _ _ 1: The splitting probability Pdlnj[t] is

expressed as follows:

 (25)

2) Token Bucket Algorithm: At each node n; for each

previous-hop neighbor l; next-hop neighbor j and

each estination d; we maintain a token bucket rdlnj:

At each time slot t; the token bucket is decremented

by _d lnj[t]; but cannot go below the lower bound 0 :

When rd

1] tokens (associated with bucket d lnj) are

“wasted” in slot t: Upon a packet arrival from

previous hop l at node n for destination d at slot t; we

find the token bucket rdlnj_ which has the smallest

number of tokens (the minimization is over next-hop

neighbors j), breaking ties arbitrarily, add the packet

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 10 | P a g e

to the corresponding real queue qlnj_ ; and add one

token from the corresponding bucket:

E. Extra link Activation

Like the case without network coding, extra link

activation can reduce delays significantly. As in the

case without network coding, we add additional links

to the schedule based on the queue lengths at each

link. For extra link activation purposes, we only

consider point-to-point links and not broadcast. Thus,

we schedule additional point-to-point links by giving

priority to those links with larger queue backlogs.

VIII. SIMULATIONS
We consider two types of networks in our

simulations: wireline and wireless. Next, we describe

the topologies and simulation parameters used in our

simulations, and then present our simulation results.

A. Simulation Settings

1) Wireline Setting: The network shown in

Figure 3 has 31 nodes and represents the GMPLS

network topology of North America [1]. Each link is

assume to be able to transmit 1 packets in each slot.

We assume that the arrival process is a Poisson

process with parameter _; and we consider the

arrivals come within a slot are considered for service

at the beginning of the next slot. Once a packet

arrives from an external flow at a node n, the

destination is decided by probability mass function ^

Pnd; d = 1; 2; :::N; where ^ Pnd is the probability that

a packet is received externally at node n destined for

d: Obviously, P d:d6=n ^ Pnd = 1; and ^ Pnn = 0: The

probability ^ Pnd is calculated by

whereJn denotes the number of neighbors of

node n: Thus, we use ^ Pnd to split the incoming

traffic to each estination based on the degrees of the

source and the destination.

Fig. 3. Sprint GMPLS network topology of North

America with 31 nodes.[1]

2) Wireless Setting: We generated a random

network with 30 nodes which resulted in the topology

in Figure 4. We used the following procedure to

generate the random network: 30 nodes are placed

uniformly at random in a unit square; then starting

with a zero transmission range, the transmission

range was increased till the network was connected.

We assume that each link can transmit one packet per

time slot. We assume a 2-hop interference model in

our simulations. By a k-hop interference model, we

mean a wireless network where a link activation

silences all other links which are k hops from the

activated link. The packet arrival processes are

generated using the same method as in the wireline

case. We simulate two cases given the network

topology: the no coding case and the network coding

case. In both wireline and wireless simulations, we

chose _ in (13) to be 0:02.

Fig. 4. Wireless network topology with 30 nodes.

B. Simulation Results

1) Wireline Networks: First, we compare the

performance of three algorithms: the traditional back-

pressure lgorithm, the basic shadow queue

routing/scheduling algorithm without the extra link

activation enhancement and PARN. Without extra

link activation, to ensure that the real arrival rate at

each link is less than the link capacity provided by

the shadow algorithm, we choose " = 0:02: Figure 5

shows delay as a function of the arrival rate lambda

for the three algorithms. As can be seen from the

figure, simply using a value of M > 0 does not help to

reduce delays without extra link activation. The

reason is that, while M > 0 encourages the use of

shortest paths, links with back-pressure less than M

will not be scheduled and thus can contribute to

additional delays.

Next, we study the impact of M on the

performance on PARN.

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 11 | P a g e

Fig.

5. The impact of the parameter M in Sprint GMPLS

network topology

Figure 6 shows the delay performance for

various M with extra link activation in the wireline

network. The delays or different values of M (except

M = 0) are almost the same in the light traffic region.

Once M is sufficiently larger than zero, extra link

activation seems to play a bigger role, than the choice

of the value of M; in reducing the average delays.

The wireline simulations show the usefulness of the

PARN algorithm for adaptive routing. However, a

wireline network does not capture the scheduling

aspects inherent to wireless networks, which is

studied next.

Fig. 6. Packet delay as a function of _ under PARN in

Sprint GMPLS network topology

2) Wireless Networks: In the case of wireless

networks, even with extra link activation, to ensure

stability even when the arrival rates are within the

capacity region, we need " > 0: We chose " = 0:1 in

our simulations due to reasons mentioned in Section

VI.

In Figure 7, we study wireless networks without

network coding. From the figure, we see that the

delay performance is relatively insensitive to the

choice of M as long as it is sufficiently greater than

zero. The use of M ensures that unnecessary resource

wastage does not occur, and thus, extra link

activation can be used to decrease delays

significantly.

Fig. 7. Packet delay as a function of _ under PARN in

the wireless network under 2-hop interference model

without network coding

In Figures 8 and 9, we show the corresponding

results for the case where both adaptive routing and

network coding are used. Comparing Figures 7 and 8,

we see that, when used in conjunction with adaptive

routing, network coding can increase the capacity

region. We make the following observation regarding

the case M = 0 in Figure 9: in this case, no attempt is

made to optimize routing in the network. As a result,

the delay performance is very bad compared to the

cases with M > 0 (Figure 8). In other words, network

coding alone does not increase capacity sufficiently

to overcome the effects of back-pressure routing. On

the other hand, PARN with M > 0 harnesses the

power of network coding by selecting routes

appropriately.

Next, we make the following observation about

network coding. Comparing Figures 8 and 9, we

noticed that at moderate to high loads (but when the

load is within the capacity region of the no coding

case), network coding increases delays slightly. We

believe that this is due to fact that packets are stored

in multiple queues under network coding at each

node: for each next-hop neighbour, a queue for each

previous-hop neighbour must be maintained. This

seems to result in slower convergence of the routing

table. Finally, we study the performance of the

probabilistic splitting algorithm versus the token

bucket algorithm. In our simulations, the token

bucket algorithm runs significantly faster, by a factor

of 2: The reason is that many more calculations are

needed for the probabilistic splitting algorithm as

compared to the token bucket algorithm. This may

have some implications for practice. So, in Figure 10,

we compare the delay performance of the two

algorithms. As can be seen from the figure, the token

bucket and probabilistic splitting algorithms result in

similar performance. Therefore, in practice, the token

bucket algorithm may be preferable.

P. Swetha Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 2), June 2014, pp.01-12

 www.ijera.com 12 | P a g e

Fig. 8. Packet delay as a function of _ under PARN

for M > 0 in the wireless network under 2-hop

interference model with network coding

Fig. 9. Packet delay as a function of _ under PARN

for M = 0 in the wireless network under 2-hop

interference model with network coding

IX. CONCLUSION
The back-pressure algorithm, while being

throughputoptimal, is not useful in practice for

adaptive routing since the delay performance can be

really bad. In this paper, we have presented an

algorithm that routes packets on shortest hops when

possible, and decouples routing and scheduling using

a probabilistic splitting algorithm built on the concept

of shadow queues introduced in [6], [7]. By

maintaining a probabilistic routing table that changes

slowly over time, real packets do not have to explore

long paths to improve throughput, this functionality

is performed by the shadow “packets.” Our algorithm

also allows extra link activation to reduce delays. The

algorithm has also been shown to reduce the queuing

complexity at each node and can be extended to

optimally trade off between routing and network

coding.

REFERENCES
[1] Sprint IP network performance. Available at

https://www.sprint.net/performance/.

[2] B. Awerbuch and T. Leighton. A simple local-

control approximation algorithm for

multicommodity flow. In Proc. 34th Annual

Symposium on the Foundations of Computer

Science, 1993.

[3] M. Bramson. Convergence to equilbria for

fluid models of FIFO queueing networks.

QueueingSystems:Theory and Applications,

22:5– 45, 1996.

[4] A. Brzezinski, G. Zussman, and E. Modiano.

Enabling distributed throughput maximization

in wireless mesh networks - a partitioning

approach. In Proc. ACM Mobicom, Sep.

2006.

[5] L. Bui, R. Srikant, and A. L. Stolyar. A novel

architecture for delay reduction in the back-

pressure scheduling algorithm. IEEE/ACM

Trans. Networking.Submitted, 2009.

[6] L. Bui, R. Srikant, and A. L. Stolyar. Optimal

resource allocation for multicast flows in

multihop wireless networks. Philosophical

Transactions of the Royal Society, Ser.A,

2008.To appear.

[7] L. Bui, R. Srikant, and A. L. Stolyar. Novel

architectures and algorithms for delay

reduction in back-pressure scheduling and

routing. In Proceedings of IEEE INFOCOM

Mini-Conference, April 2009.

[8] L. Chen, T. Ho, S. H. Low, M. Chiang, and J.

C. Doyle. Optimization based rate control for

multicast with network coding. In Proc. IEEE

INFOCOM, Anchorage, Alaska, May 2007.

[9] A. Dimakis and J. Walrand. Sufficient

conditions for stability of longestqueue- first

scheduling: Second-order properties using

fluid limits. Advances in Applied Probability,

June 2006.

[10] M. Effros, T. Ho, and S. Kim. A tiling

approach to network code design for wireless

networks. In Information Theory Workshop,

2006.

BIOGRAPHY
P.SWETHA has received her B.Tech degree from

Sri VenkatesaPerumal College of Engg& Tech,

Puttur. She is post graduated in M. Tech (S.E) stream

from Department of Computer Science Engineering

from Sir Visweshwaraih Institute of Science & Tech,

Madanapalli.

https://www.sprint.net/performance/

